100% authentic writing

Follow us on:

social
 
cube
 
chat off
Toll Free:
get your paper now
Get a free quote
Order your paper
Customer login
most popular order
with one order you receive 5 in 1
categories
Art
Buying an Essay
College life
Custom Research Paper
Essays for Sale
Purchase Term Paper
Research Paper Ideas
Travels
Using Writing Service
Writing an Essay
Writing Papers Guide
Writing Research Paper
Writing Term Paper
categories
10 Most Useful Tips to Compose a Better Essay
Getting a Job in IT: Tips for College Students & Graduates
How to Choose the Best Biology Research Topic?
The Greenhouse Effect and Its Consequences
How to Achieve Your Goals

Paypal

 
 
← Technology Application and PracticeDeterminism →
Live Chat

Custom Design of an Orion Space Transportation System essay paper sample

Buy custom Design of an Orion Space Transportation System essay paper cheap

Vision for Space Exploration (VSE) embodies a watershed chance to enlarge the depth and breadth for human exploration and development for today’s and future generations. The launch of space stations has brought negative impacts within the environment and human health. For instance, China’s launch of a 900 to (US) station into a 285 mile Low Earth Orbit with the use of Orion propulsion system and launch of a 1000 ton (US) space station into GEO by ESA have some negative implications. Consequently this has necessitated a need for reorganizing the way of achieving these goals (Griffin, 2007). The situation also comes in the wake of a cut in the National Aeronautical and Space Administration (NASA), making it almost impossible to attain the objectives of VSE with aid of NASA’s current strategy. This paper will therefore present a detailed discussion on the alternative technology that need to be employed within the existing  Space Transport System (STS) to ensure the negative impacts brought about are reduced to the their minimum levels.

ESA is determined to initiate new technology that will see most of its goals accomplished. For instance its ultimate goal is enhance better quality of life, create more wealth and better security through the quest of science and technology and also achieve the citizen’s thirst and dream of knowledge especially the younger generation. Another goal that ESA wants to attain is being with a full fleet of launch vehicles in service, contending in all sectors within the launch market. ESA is determined to carry out its operations in a manner will minimize costs and possible environmental and human health hazards (Dumbacher, 2009).

Being with a full fleet of launch vehicles in service

The STS has been able to launch many vehicles.  Some of which includes the Crawler-Transporter which carries the Mobile Launcher Platform (MLP)  one of three two-story structures used by NASA to support the Space Shuttle stack during its transportation from the Vehicle Assembly Building. The Shuttle Carrier Aircraft  which can fly an orbiter from alternative landing sites back to the Kennedy Space Center. The Orbiter Transfer System originally built for the U.S. Air Force's launch facility at Vandenberg Air Force Base in California.  The Astrovan is used to transport astronauts from the crew quarters in the Operations and Checkout Building to the launch pad on launch day. It is also used to transport astronauts back again from the Crew Transport Vehicle at the Shuttle Landing Facility and many more.

Minimize costs

Launching of a 100 ton (US) space station into Geosynchronous Earth orbit (GEO) will call for a new technology to allow a smooth transition and less negative effects on the environment and human beings. The best approach to start with is engaging DIRECT derivative of the present Space Transport System. The move will be possible through swiftly fielding the Orion Spacecraft through an access level version of heavy lift vehicles’ latest family referred to as “Jupiter” (Griffin, 2007). In minimizing the costs involved, within the VSE’s initial phase, the new technology requirements will make use of the existing infrastructure of STS. This proposal will not only promote the safety of the crew but also reduce the gap within the American based entry to space especially after the retirement of the space shuttle. The European Space Agency (ESA) and CSA will also draw the same benefits as their American counterparts because they all share a common goal within the STS. This will help reduce the costs as ESA wants to reduce their operational costs to attain its goal of launching a full fleet of operational vehicles.

Enhance better quality of life

Today space activities are pursued for the benefit of citizens, and citizens are asking for a better quality of life on earth. They want greater security and economic wealth, but they also want to pursue their dreams, to increase their knowledge, and they want younger people to be attracted to the pursuit of science and technology

Create more wealth

Griffin  (2007) adds that through centering all endeavors on STS system’s DIRECT derivative long lead, technically challenging and expensive machinery, like high aptitude upper phases and upgraded/new engines can now be moved off the crucial way for NASA and ESA/CSA’s mission support. These vital long term aspects can be re-targeted for finishing point the commencement of the VSE’s lunar phase. It is not likely that there will be any major enhances in the near term slips or budgets within the space shuttle’s date of retirement.  This approach will offer the logical solution to the dilemma faced within the Space Transport System because of the complex interaction of political, economic, environmental and engineering forces. This will also cut down on costs and increase wealth. In the end the resources of many countries together makes the research more effective and creates wealth in the exploration and invention. 

Increase human safety.

Dumbacher  et al (2009) asserts that there are many benefits of the proposed new approach, DIRECT as it will enhance safety within STS and romance margin as compared to the Ares-I. For instance, the dual main engine configuration and higher performance of the Jupiter Launch vehicle gives Orion’s crew the capability to endure an out-of-condition engine for the period of ascent to orbit, that could probably even save the mission. In the case of Ares-I, an out-of-condition main engine would instantly lead to a Loss of Mission (LOM) without choice and would initiate a likely hazardous abort scheme (Ashford, 1984).  By so doing ESA will have enhanced its safety and reduce possible threats to life. In addition, Jupiter-120 has a far much superior general arrangement relative to the Are-I with respect to control authority and structural loading allowing a wider range of satisfactory launch conditions and ascent eventuality planning. This further improves the mission rate of success as observed within ESA’s mission of increased human safety.

Better security through the quest of science and technology

Setting up of a lunar base on nearside is could easily solve some of the dilemmas within the STS because the moon is seen as an idyllic point for space explores to accumulate materials and human labor out the deep gravitational well of the earth (Ashford, 1984). However, there are many challenges involved as according to studies, establishing a lunar base could bring about more problems on the moon. Problems to do with lunar dust are inevitable, a thick layer of fine dust referred to as regolith envelopes the lunar surface and any slight destruction may cause it to build up on receptive power components, hampering their performance. Spacecraft operations will disturb considerable amounts of lunar dust hence any attempt to site it within the moon has consider positioning dust sensitive apparatus at a distance as far as possible from the pedestal centre of operations.

Prevent environmental disturbance

To prevent environmental disturbance as part of ESA’s goal however, there is still good news that STS could still set up a lunar base on nearside but through a careful site selection approach integrating the lunar science’s potentially completing interests, operational constraints, resource utilization and other important factors such as lunar landscape’s topography, launch and landing trajectories of the transportation vehicles, safety considerations like free abort trajectories, probability of utilizing lunar resource, communications needs to, from and on to the lunar space and scientific objectives (June and Camp, 1983).

Minimize possible environmental and human health hazards

All potential hazards brought about by launching and testing spacecrafts have to be dealt with agency. Studies indicate that exposure to recurrent nuclear blasts cause the problem of erosion (ablation) of the pusher plate. According to experiments and calculations, ablation of less than 1 mm happen incase a steel plate is not protected. This is a problem that is easily solved through spraying with oil. Additionally spalling can happen hence destroying the pusher plate; this problem is solved however by using alternative materials such as fiberglass and plywood (June and Camp, 1983). ESA is determined to minimize possible environmental and human health hazards hence this move will help attain it.

A serious problem could occur from a launch of the spacecraft from the Earth’s surface, the nuclear fallout. Researches indicate that any explosion in the magnetosphere could bring fissionable back to the earth’s surface except if the launch happened from a polar area like barge within the higher areas of the Arctic. Additionally, this will be the case when the opening launching explosion is a big mass of usual high explosive only to considerably reduce fallout; succeeding denotations would be in the air hence much cleaner (Griffin, 2007).

To conclude the whole discussion about developing new technology for Space Transport System to reduce hazards that could be associated with it, it is important to emphasize the safety of the environment, crew members and the health of general public has to carefully put into consideration. This way, there will be goodwill from all the concerned individuals because of safety. 

Buy custom Design of an Orion Space Transportation System essay paper cheap

Order Now
Orderhesitating

Related essays

  1. Determinism
  2. Impacts of E-mail Services on People’s Life
  3. Technology Application and Practice
  4. Case Study
 
3.8K
1.2K
Email:
Password:
why we are
10+ years experience on
custom writing market
Satisfied returning customers
A wide range of services
3-hour delivery available
100% privacy guaranteed
Professional team of experienced paper writers
Only custom-written papers
Free revision within 2 days
Constant access to your paper writer
Free cover and reference page
essays stat
10 chat / phone operators online at the moment
895 writers active
18454 writers in the database
10 new writers passed exam this week
5618 pages written
1754776 words written
8.5 out of 10 current average quality score
Satisfied customers: 97%
discountscustomer support via live chat, email, phone
Type of assignment:
Urgency:
Writer level:
Cost per page: ...
Number of pages:
Total without discount: $12.99

15% off your first custom essay order. Order now

PRICES
from $12.99/PAGE
X